Comparative spring mechanics in mantis shrimp.

نویسندگان

  • S N Patek
  • M V Rosario
  • J R A Taylor
چکیده

Elastic mechanisms are fundamental to fast and efficient movements. Mantis shrimp power their fast raptorial appendages using a conserved network of exoskeletal springs, linkages and latches. Their appendages are fantastically diverse, ranging from spears to hammers. We measured the spring mechanics of 12 mantis shrimp species from five different families exhibiting hammer-shaped, spear-shaped and undifferentiated appendages. Across species, spring force and work increase with size of the appendage and spring constant is not correlated with size. Species that hammer their prey exhibit significantly greater spring resilience compared with species that impale evasive prey ('spearers'); mixed statistical results show that species that hammer prey also produce greater work relative to size during spring loading compared with spearers. Disabling part of the spring mechanism, the 'saddle', significantly decreases spring force and work in three smasher species; cross-species analyses show a greater effect of cutting the saddle on the spring force and spring constant in species without hammers compared with species with hammers. Overall, the study shows a more potent spring mechanism in the faster and more powerful hammering species compared with spearing species while also highlighting the challenges of reconciling within-species and cross-species mechanical analyses when different processes may be acting at these two different levels of analysis. The observed mechanical variation in spring mechanics provides insights into the evolutionary history, morphological components and mechanical behavior, which were not discernible in prior single-species studies. The results also suggest that, even with a conserved spring mechanism, spring behavior, potency and component structures can be varied within a clade with implications for the behavioral functions of power-amplified devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feed-forward motor control of ultrafast, ballistic movements.

To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing s...

متن کامل

Strike mechanics of an ambush predator: the spearing mantis shrimp.

Ambush predation is characterized by an animal scanning the environment from a concealed position and then rapidly executing a surprise attack. Mantis shrimp (Stomatopoda) consist of both ambush predators ('spearers') and foragers ('smashers'). Spearers hide in sandy burrows and capture evasive prey, whereas smashers search for prey away from their burrows and typically hammer hard-shelled, sed...

متن کامل

Mantis shrimp allergy.

We report the case of a 25-year-old female who experienced two immediate episodes of labial, lingual and larynx angiodema after eating fried mantis shrimp (Squilla empusa), a crustacean belonging to the Squillidae family, and a third episode after eating shellfish pudding. Prick by prick tests to mantis shrimp and to other crustacean were positive. Serum specific IgE showed higher values than 0...

متن کامل

Modularity and scaling in fast movements: power amplification in mantis shrimp.

Extremely fast animal actions are accomplished with mechanisms that reduce the duration of movement. This process is known as power amplification. Although many studies have examined the morphology and performance of power-amplified systems, little is known about their development and evolution. Here, we examine scaling and modularity in the powerful predatory appendages of a mantis shrimp, Gon...

متن کامل

Elastic energy storage in the mantis shrimp's fast predatory strike.

Storage of elastic energy is key to increasing the power output of many biological systems. Mantis shrimp (Stomatopoda) must store considerable elastic energy prior to their rapid raptorial strikes; however, little is known about the dynamics and location of elastic energy storage structures in this system. We used computed tomography (CT) to visualize the mineralization patterns in Gonodactyla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 216 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2013